Mevalonate Pathway Blockade, Mitochondrial Dysfunction and Autophagy: A Possible Link
نویسندگان
چکیده
The mevalonate pathway, crucial for cholesterol synthesis, plays a key role in multiple cellular processes. Deregulation of this pathway is also correlated with diminished protein prenylation, an important post-translational modification necessary to localize certain proteins, such as small GTPases, to membranes. Mevalonate pathway blockade has been linked to mitochondrial dysfunction: especially involving lower mitochondrial membrane potential and increased release of pro-apoptotic factors in cytosol. Furthermore a severe reduction of protein prenylation has also been associated with defective autophagy, possibly causing inflammasome activation and subsequent cell death. So, it is tempting to hypothesize a mechanism in which defective autophagy fails to remove damaged mitochondria, resulting in increased cell death. This mechanism could play a significant role in Mevalonate Kinase Deficiency, an autoinflammatory disease characterized by a defect in Mevalonate Kinase, a key enzyme of the mevalonate pathway. Patients carrying mutations in the MVK gene, encoding this enzyme, show increased inflammation and lower protein prenylation levels. This review aims at analysing the correlation between mevalonate pathway defects, mitochondrial dysfunction and defective autophagy, as well as inflammation, using Mevalonate Kinase Deficiency as a model to clarify the current pathogenetic hypothesis as the basis of the disease.
منابع مشابه
Geranylgeraniol and Neurological Impairment: Involvement of Apoptosis and Mitochondrial Morphology
Deregulation of the cholesterol pathway is an anomaly observed in human diseases, many of which have in common neurological involvement and unknown pathogenesis. In this study we have used Mevalonate Kinase Deficiency (MKD) as a disease-model in order to investigate the link between the deregulation of the mevalonate pathway and the consequent neurodegeneration. The blocking of the mevalonate p...
متن کاملMolecular mechanisms responsible for neuroinflammation and neurological impairments in mevalonate kinase deficiency☆
Mevalonate kinase deficiency (MKD) is due to by pathogenic mutations in the MVK gene that cause a reduced activity of the enzyme [1]. Specifically, it is characterized by psychomotor retardation, failure to thrive, progressive cerebellar ataxia, dysmorphic features, progressive visual impairment and recurrent fevers. Although the knowledge of MKD pathogenesis has increased, the link between gen...
متن کاملBlock of the Mevalonate Pathway Triggers Oxidative and Inflammatory Molecular Mechanisms Modulated by Exogenous Isoprenoid Compounds
Deregulation of the mevalonate pathway is known to be involved in a number of diseases that exhibit a systemic inflammatory phenotype and often neurological involvements, as seen in patients suffering from a rare disease called mevalonate kinase deficiency (MKD). One of the molecular mechanisms underlying this pathology could depend on the shortage of isoprenoid compounds and the subsequent mit...
متن کاملSchizophrenia Induces Oxidative Stress and Cytochrome C Release in Isolated Rat Brain Mitochondria: a Possible Pathway for Induction of Apoptosis and Neurodegeneration
Schizophrenia is a chronic and often debilitating illness which affects about 1% of the world population. Some reagents have been used to simulate schizophrenic disorders in laboratory animals, such as amphetamine and ketamine. Previous studies have suggested that reactive oxygen species (ROS) production, reduced levels of ATP, mitochondrial dysfunction and apoptosis are involved in the pathoph...
متن کاملSchizophrenia Induces Oxidative Stress and Cytochrome C Release in Isolated Rat Brain Mitochondria: a Possible Pathway for Induction of Apoptosis and Neurodegeneration
Schizophrenia is a chronic and often debilitating illness which affects about 1% of the world population. Some reagents have been used to simulate schizophrenic disorders in laboratory animals, such as amphetamine and ketamine. Previous studies have suggested that reactive oxygen species (ROS) production, reduced levels of ATP, mitochondrial dysfunction and apoptosis are involved in the pathoph...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2015